Retinoic acid combined with vitamin A synergizes to increase retinyl ester storage in the lungs of newborn and dexamethasone-treated neonatal rats.

نویسندگان

  • A Catharine Ross
  • Namasivayam Ambalavanan
چکیده

BACKGROUND Retinyl esters (REs), the major storage form of vitamin A (retinol), provide substrates for the production of bioactive retinoids, including retinoic acid (RA), which are known to promote lung development and maturation. We previously showed that the nutrient-metabolite combination VARA (molar ratio 10 vitamin A to 1 RA), synergistically increased REs in the lungs of 1-week-old rats, compared to vitamin A or RA alone. OBJECTIVES To test the hypotheses, first, that VARA is more effective in increasing lung RE than is vitamin A in newborn rats prior to alveolarization, and, second, that the effect of VARA is maintained during concurrent treatment with the glucocorticoid, dexamethasone (Dex). METHODS Newborn rats were treated with VARA, vitamin A alone, or oil (C) on postnatal days (P) 1-3, and RE in the lungs was quantified on P4, and again on P8 to assess retention. Additionally, neonatal rats were treated on P5-7 with VARA with and without Dex, and the lung and liver REs were quantified on P8. RESULTS AND CONCLUSIONS Lung RE was nearly 8-fold higher in VARA compared to vitamin A-treated rats on P4 (p < 0.01) and 2.5-fold higher on P8. In neonates co-treated with Dex and VARA on P5-7, the elevation in lung RE on P8 by VARA was not antagonized by Dex, although Dex reduced growth. Lung morphology and development were not significantly altered. The VARA combination may significantly increase lung RE content even during concurrent Dex therapy. Because lung retinoids are important for lung maturation and repair, increasing lung RE may possibly have clinical benefit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin A combined with retinoic acid increases retinol uptake and lung retinyl ester formation in a synergistic manner in neonatal rats.

Vitamin A (VA) is stored in tissues predominantly as retinyl esters (REs), which provide substrate for the production of bioactive retinoids. Retinoic acid (RA), a principal metabolite, has been shown to induce postnatal lung development. To better understand lung RE storage, we compared VA (given as retinyl palmitate), RA, and a nutrient-metabolite combination, VARA, given orally on postnatal ...

متن کامل

Vitamin A and Retinoic Acid Combined Have a More Potent Effect Compared with Vitamin A Alone on the Uptake of Retinol into Extrahepatic Tissues of Neonatal Rats Raised under Vitamin A–Marginal Conditions

Background: Vitamin A (VA; retinol) supplementation is widely used to reduce child mortality in low-income countries. However, existing research suggests that supplementation with VA alone may not be optimal for infants. Objective: We compared the effect of VA with VA combined with retinoic acid (VARA) on retinol uptake and turnover in organs of neonatal rats raised under VA-marginal conditions...

متن کامل

Acidic retinoids synergize with vitamin A to enhance retinol uptake and STRA6, LRAT, and CYP26B1 expression in neonatal lung.

Vitamin A (VA) is essential for fetal lung development and postnatal lung maturation. VA is stored mainly as retinyl esters (REs), which may be mobilized for production of retinoic acid (RA). This study was designed 1) to evaluate several acidic retinoids for their potential to increase RE in the lungs of VA-supplemented neonatal rats, and 2) to determine the expression of retinoid homeostatic ...

متن کامل

Acidic retinoids in small amounts promote retinyl ester formation in neonatal lung, with transient increases in retinoid homeostatic gene expression

BACKGROUND Mixing a small proportion, 10%, of retinoic acid (RA) into an oral dose of vitamin A (VA) has been shown to markedly increase retinol uptake and retinyl ester (RE) formation in the neonatal lung, as compared to VA given alone. Concomitantly, several retinoid homeostatic genes, lecithin:retinol acyltransferase (LRAT), RA-4-hydroxylase (CYP26B1), and stimulated by retinoic acid gene-6 ...

متن کامل

Opposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation.

Vitamin A homoeostasis requires the gene encoding cellular retinol-binding protein-1 (Crbp1) which stimulates conversion of retinol into retinyl esters that serve as a storage form of vitamin A. The gene encoding alcohol dehydrogenase-1 (Adh1) greatly facilitates degradative metabolism of excess retinol into retinoic acid to protect against toxic effects of high dietary vitamin A. Crbp1-/-/Adh1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neonatology

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2007